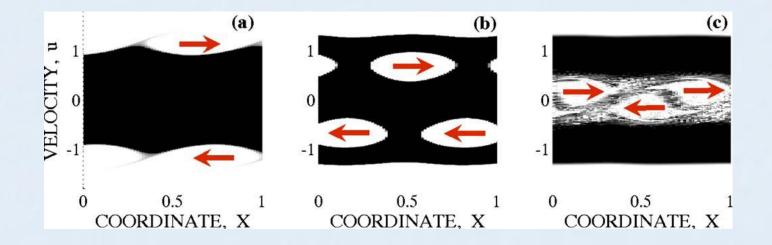
A Water Bag Model of Phase Space Holes in Nonneutral Plasma

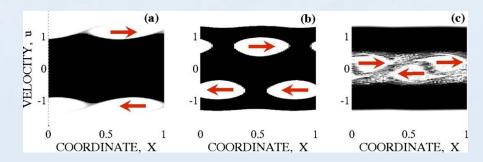
Ido Barth and Lazar Friedland



I. Barth, L. Friedland, and A.G. Shagalov, Phys. Plasmas, 15, 082110 (2008)

BGK (Berstein, Greene and Kruskal) Modes

- Electrostatic, dissipationless (no Landau damping) waves
- Fluid-type description is not sufficient (resonant particles).
- Need of kinetic theory (Vlasov-Poisson)
- Observed:
 - plasma experiments , but difficult to control
 - Magnetosphere
 - Solar wind
 - Supernova remnant



How to excite and control BGK modes ?

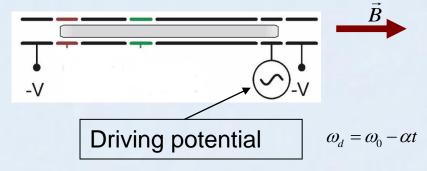
Our approach:

- Take a Penning trapped pure-ion plasma.
- Apply an oscillating external potential.
- Slowly reduce the driving frequency.
- Phase space hole and the associated BGK mode locked to the drive is formed.

Autoresonance !

The System

Penning trapped plasma:



Vlasov-Poisson system:

$$\begin{cases} f_t + uf_x - \left(\varphi_x + \varphi_x^{drive}\right) f_u = 0\\ \varphi_{xx} - \kappa^2 \varphi = \eta^2 \left(1 - \int_{-\infty}^{\infty} f\left(u, x, t\right) du\right) \end{cases}$$

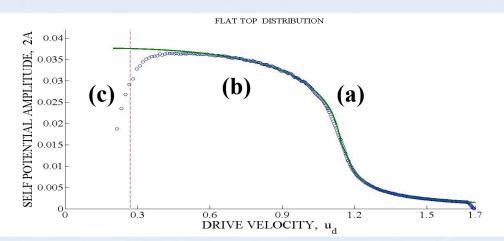
Reflecting boundary conditions:

$$\begin{cases} f(u,0,t) = f(-u,0,,t) \\ f(u,1,t) = f(-u,1,t) \end{cases}$$

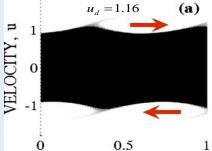
• L. Friedland, F. Peinetti, W. Bertsche, J. Fajans, and J. Wurtele, Phys. Plasmas 11, 4305 (2004)

Simulation Results

Electrostatic wave amplitude:



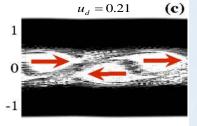
Phase space holes formation:



COORDINATE, X Holes outside

 $u_{d} = 0.7$ **(b)** 0

0.5



0.5 1 0 COORDINATE, X COORDINATE, X Holes inside Collision and resonance overlap

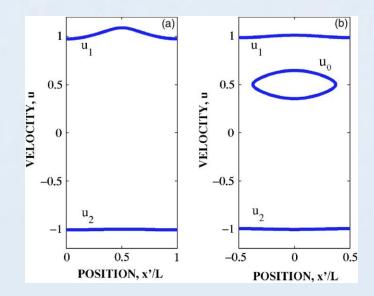
Phase space holes **BGK mode**

0

The Water Bag model Assumptions:

Plasma between limiting trajectories.
 Perfect phase locking.

Dynamics of the limiting trajectories

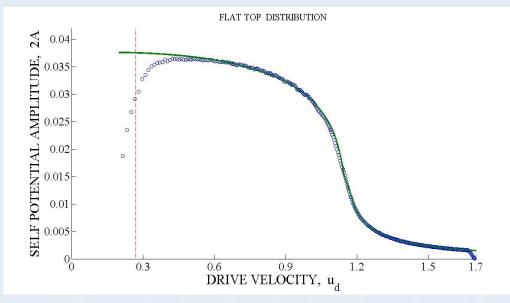


Differential equations — Algebraic equations

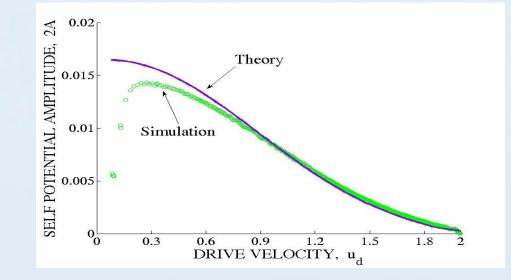
- Hamiltonian system with slow parameters.
- Each limiting trajectory has its own conserved action.
- Add Fourier transformed Poisson equation
- Sufficient number of algebraic equations to describe evolution of the limiting trajectories and the associate BGK mode.

Simulation vs. Theory

Flat top
 Distribution



Mexwellian
 Distribution

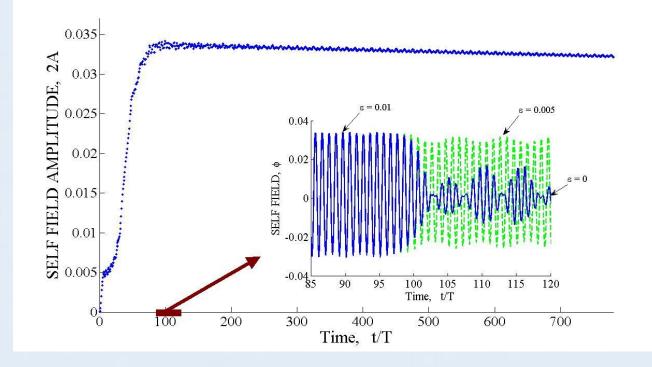


Summary

We found a way to excite and control BGK modes in trapped single species plasmas.
Our water bag theory fully agrees with simulations.

Thank you !

Stability



Vlasov-Poisson System

$$\begin{cases} f_t + uf_x - \left(\varphi_x + \varphi_x^{drive}\right) f_u = 0\\ \varphi_{xx} - \kappa^2 \varphi = \eta^2 \left(1 - \int_{-\infty}^{\infty} f\left(u, x, t\right) du \right) \end{cases}$$

 κ = radial screening parameter. η = dencity parameter.

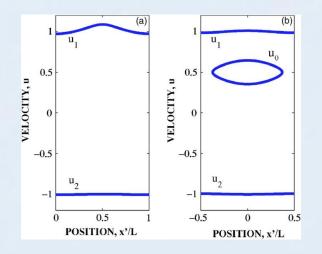
$$\varphi^{drive} = 2\varepsilon \cos(kx) \cos\left(\int \omega_d(t) dt\right)$$
$$\omega_d = \omega_0 - \alpha t$$

Reflecting boundary conditions:

$$\begin{cases} f(u,0,t) = f(-u,0,,t) \\ f(u,1,t) = f(-u,1,t) \end{cases}$$

Differential equations — Algebraic equations

- Limiting trajectory Hamiltonian: $H(u, x') = \frac{1}{2}(u u_d)^2 A'\cos(kx')$
- Poisson equation:
 - Holes outside $A(k^2 + \kappa^2) = \eta^2 (F_2 F_1)$
 - Holes inside $A(k^2 + \kappa^2) = \eta^2 (F_1 + F_2 + F_0)$
- Adiabatic Invariants: $J_{0,1,2} = \frac{1}{4} \int u_{0,1,2} dx'$ $F_{0,1,2} = \frac{1}{2} \int u_{0,1,2} \cos(kx') dx'$ $u = u_d + \sqrt{2(H + A' \cos(kx'))}$



2 free holes = 1 trapped hole

Symmetry condition:

f(u, x, t) = f(-u, -x, t) $\varphi(x, t) = \varphi(-x, t)$

Adiabatic Driven Water Bag model

- Adiabatic transformation between stationary driven water bag equilibria.
- Each limiting trajectory posses an adiabatic invariant
- We get a complete set of Algebraic equations for the self field and the limiting trajectories.